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I. STATEMENT OF THE PROBLEM

There have been three primary objectives of our recent contract to ARO:

• The development of analytical derivative methods for coupled-cluster (CC)

and many-body perturbation theory (MBPT) vavefunctions. Such methods are

essential in the location of minima and transition states on potential energy

surfaces, and in the first-principle prediction of vibrational spectra.

* Applications of the CC/MBPT methods and associated analytical derivative

methods to transient molecules, such as those present in the combustion of

rocket fuels, in interstellar space, or occur as reaction intermediates.

* The development of CC/KBPT methods for large molecule applications.

Ve have made a number of achievements in these three areas. The folloving

highlights several of them.

II. SUMMARY OF SOME IMPORTANT RESULTS

A. During the course of this contract ve presented the first report of

MBPT(3) and D-MBPT(4) (i.e. fourth-order KBPT limited to double

excitations) analytical gradients 11.* These were illustrated in

calculations on 120 and CH2. In our earlier york for ARO [1-41+ the D-

NBPT(4) method subject to finite nuclear displacement vas found to be

quite accurate in structure determinations for flame species like HCO,

12CO, a3CO, C62 N, among others. Hence, the analytical equivalent should

be an inexpensive but quite useful level of approximation (see E belov).

*B references refer to the bibliography of papers supported by AR0 on page 20.

+Other references are listed on page 24.

-1-



B. Ve also reported the first CCD (coupled-cluster double) analytical

gradients [B3], and illustrated this method to B2CO. CC/KBPT methods

scale correctly vith molecular size but are non-variational.

Consequently, the simplifications that occur for variational methods

cannot be used, requiring that some rather different methods be develc ed

than in SCF, HCSCF and CI.

C. The above application of CC/MBPT theory employed a procedure that vould

require roughly the equivalent of a CC or KBPT calculation for each

distinct vibrational-rotational degree of freedom. This is not a

practical way to solve the analytical CC/MBPT problem, so ve presented a

very general formulation that demonstrates that all energy derivatives

vith respect to 3N nuclear displacements may be computed vith only about

tvice the effort required by the CC/HBPT energy calculation [B4]. Only

this simplification sakes it possible to use the very accurate CC/KBPT

methods for searching energy surfaces for molecules vith several degrees

of freedom.

D. Building upon this development, ve presented a paper vith detailed

equations for any level of CC theory and extracted the full fourth-order

(i.e. SDTQ-HBPT(4)) gradient formula as a special case [8).

E. This formulation is very different than our original analytical gradient

method, and it requires substantial computational effort to implement.

Just recently, ve have achieved its implementation at the MBPT(3) and

D-HBPT(4) levels 1B141. Since both are recognized as a very high level

of correlated theory for molecular 7tructures and transition states,

computer codes ve have vritten should be extensively applicable to a vide

range of chemically interesting problems.
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F. In another totally new development, we developed the first methods for

the analytical evaluation of MBPT(2) second derivatives [B5,B6J. No

routinely applicable correlated second derivative method was available

prior to this work. Initial illustrations were to B2CO [B5] and N2H2

[161.

G. In a serious application of our analytical MBPT(2) second derivative

methods to a large basis set study of the interstellar species SIC 2 , we

shoved that the triangular form of this molecule, observed experimentally

by Smalley, was indeed a minimum on the MBPT(2) energy surface [B7].

This conclusion differs from that of Grey and Schaefer [51 who found the

triangular form to correspond to a transition state at the SCF or GVB

level, but they assumed that a higher level of theory would find the

triangular structure as a minimum, once substantial amounts of

correlation were included. Via MBPT(2), we find the triangular form to

be a true minimum. Ve also predict the experimental vibrational

frequencies. These are found to be In excellent agreement with an

experiment 161 which we found after our results had appeared (See Table

1).

H. Since analytical energy second derivatives with respect to nuclear

displacement (i.e. 82E/aXaaY ) provides the harmonic force constants for

molecules, a generalization to the mixed second derivatives relative to a

nuclear displacement and an electric field, (i.e. 0 2E/aXa3Fz) provide the

dipole derivatives required to obtain the intensity of a vibrational

transition. We have recently addeO these terms to provide MBPT(2) level

-3-



Table 1

SiC 2 DZ+P A1 RING STRUCTURE

SOP(a) GVB(a) KBPT(2)(b) Expt. c  Expt. d

(C-C) 1.256 1.267 1.294 1.268 1.250

R(Si-C) 1.835 1.821 1.835 1.837 1.812

C-Si-C 40.0 40.7 41.3 40.4 40.4

C-C str. 1976 1892 1720 1742e

Si-C AI str. 851 873 839 852e

Ring Open. 3281 1711 183 ---

aR.S. Grev and H.F. Schaefer, J. Chem. Phys. 80, 3552 (1984).

bG. Fitzgerald, S.J. Cole and R.J. Bartlett, J. Chem. Phys. 85, 1701 (1986).

Cp. Tahddeus, S.E. Cummins and R.A. Linke, Astrophysical Jour. 283, 245 (1984).

dD.L. Kichalopoulos, N.E. Geusic, P.R.R. Langridge-Smith, and R.E. Smalley, J.

Chem. Phys. 80, 3556 (1984).

eR.A. Shepard and V.R.H. Graham, J. Chem. Phys. 82, 4789 (1985).
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IR intensities as well [B12]. These techniques make it possible to

routinely predict IR spectra for molecules while including much of the

esiential electron correlation effects.

I. The unknown, transient molecule N3H3, occupies an essential place in the

understanding of the chemical bond and as a reaction intermediate, since

it is isoelectronic with ozone (03) , cyclopropane and propene (C3H6 ). It

may exist in three forms, a cyclic ring, triaziridine; an open form,

triimide, and a triazene structure (see Fig. 1). None have ever been

observed. Using our MBPT(2) first and second derivatives we have

determined that all three forms of N3H3 are local minima on the potential

energy surface and defined this detailed structure. Using high-level

MBPT(4) and CCSD+T(CCSD) methods we predict that the triazene isomer is

the lowest in energy, being more stable than the triimide form by 17.30

and triaziridine by 41.24 (see Table 2). Furthermore, we have predicted

the IR spectra of the three N3H3 isomers (see Figs. 2-7) at the SCF and

the correlated MBPT(2) level. Note the dramatic differences between the

SC? and the correlated MBPT(2) predictions, particularly for triaziridine

and triimide. The differences pertain to the intensities and the

frequencies. Since we know the error in the frequencies at the MBPT(2)

level is typically less than 5Z compared to 10-20Z for SCF predictions

(see Table 3), we believe the MBPT(2) results to be sufficiently accurate

to be used as a guide to experimental spectroscopists to identify N3H3 in

interstellar space or in matrix isolation.

J. In two other studies [B9,Bl1] we have used our MBPT(2) analytical second

derivative methods and high level C" calculations to further characterize

the decomposition of B2H6 * 2BH 3. A particularly interesting conclusion

from this study is that the accepted experimental IR spectra [71 of the

-5-
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Table 3

AVERAGE PERCENTAGE ERROR FOR VIBRATIONAL FREQUENCIES

RELATIVE TO EXPERIMENT (ANRARMONIC)

(DZP BASIS SETS)

SC? MBPT(2)

3110 20.5 4.7

CF2  13.5 3.1

N12A 15.5 4.2

sic 2  6.7 1.3

CNQ2 12.9 4.9



transient BHi3 molecule is erroneous! Since BH3 can only be made by

dissociation, the experiment produced BH3 from the decomposition of

BH3CO. After subtracting all peaks associated vith CO, B2B6, and various

impurities, one strong peak and three weak IR peaks remained. These were

ascribed to DH3. Our calculation for BH3 (Table 4) gives good agreement

in terms of intensities and frequencies vith three of the peaks, but the

strong peak occurs at an incorrect frequency compared to our calculation.

Furthermore, our prediction of its intensity shovs that it would be less

than one-tenth as intense as the weak peaks, meaning it could not have

been observed in the experiment. This study attests to the pover of

modern-day ab initio methods to offer a reliable voice in resolving

experimental discrepancies. In Table 5 are presented NBPT(2) frequencies

and intensities for B2H6 and B2D6, shoving the exceptional agreement we

achieve.

K. Under this contract we have also devoted substantial effort to approaches

for providing ab initio correlated predictions of energies and properties

for large molecules. Since many-body methods scale properly with

molecular size, unlike CI methods, they offer an appropriate vehicle to

study correlation effects in large molecules. The basic idea of such

large molecule methods is to require some form of electron pair

localization to make most of the molecular integrals Involving disjoint

parts of a molecule vanish 1B2]. By so doing, the difficulty of an ab

initio calculation scales roughly as the square of the number of bonds

2(-H 2), rather than as -Nw6 here N>> is the number of basis functions.

In a series of studies on prototype systems C2H6, C2H4 and C2H2 we have

shown that even very crude selecti,,-s of localized orbitals could be used

with CC methods to obtain the same accuracy as the conventional choice of

-15-



TABLE 4: NBPT(2) harmonic vibrational frequencies, we, and infrared

absorption intensities, I , calculated for 1l5B3 using the 6-31G**

basis set. Also included are the observed fundamentals, vobe' and

intensities, Iobs* Units are the same as in table 4.

Mode Type wc  Vobs Ic 1obsa

A stretch 2671 2623 b b1 bond 1207 1125 11 v

R; stretch 2817 2806 259 v
E ' bend 1273 1604 42 s

a) Taken from ref. [71. Intensities are given as: v-veak, s-strong.
b) Zero in double-harmonic approximation.

-16-
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SCF orbitals [B2. Furthermore, various extensions of these techniques

can be proposed that vill restrict the correlation treatment to certain

regions of space. There is the potential for an important development in

this area for large molecules that should be pursued in future work.

L. An important problem in the theory of point mutations is the tendency for

bases of DNA, like cytosine to tautomerize (see Fig. 8). The cyt form

is a rare tautomer of cytosine vhich will not replicate properly, often

leading to tumor formation. Using some of our large molecule methods, ve

have studied the effects of electron correlation on this tautomerization

using models of cytosine, adenine and uracil, as well as cytosine itself

[BIO]. Ve find that uniformly, the effects of electron correlation are

greater for the amino (cyt) than the imino (cyt*) forms. Similarly,

correlation favors lactim forms of uracil over lactam forms. Unlike

uracil, the very slight energy differences between the tvo forms of

cytosine prohibit any definitive conclusions about relative stability to

be dravn vithout extensive calculations, but it is apparent that electron

correlation vhich accounts to -1000 kcal/mol in cytosine vill be

essential in understanding the frequency of tautomerization. Additional

studies are devoted tovard predicting IR spectra of such complex

molecules.

-18-



Tautomeric Pairs of Nuclei Acid Bases of DNA

0 HO H,,

H\ CH3 Nkt' CH3 H re N

N N'N
IH H H HI

Ura ± Ura* Guc a _ Gua
(Thy) (Thy*)

HH H NH - H N N/H

N

NN' ON I
I I H H

*o

Cyt Cyt* Ade ± Ade*

Fig. 8
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